Erd\H{o}s-Pyber theorem for hypergraphs and secret sharing

نویسندگان

  • L'aszl'o Csirmaz
  • P'eter Ligeti
  • G'abor Tardos
چکیده

A new, constructive proof with a small explicit constant is given to the Erdős-Pyber theorem which says that the edges of a graph on n vertices can be partitioned into complete bipartite subgraphs so that every vertex is covered at most O(n/ logn) times. The theorem is generalized to uniform hypergraphs. Similar bounds with smaller constant value is provided for fractional partitioning both for graphs and for uniform hypergraphs. We show that these latter constants cannot be improved by more than a factor of 1.89 even for fractional covering by arbitrary complete multipartite subgraphs or subhypergraphs. In the case every vertex of the graph is connected to at least n −m other vertices, we prove the existence of a fractional covering of the edges by complete bipartite graphs such that every vertex is covered at most O(m/ logm) times, with only a slightly worse explicit constant. This result also generalizes to uniform hypergraphs. Our results give new improved bounds on the complexity of graph and uniform hypergraph based secret sharing schemes, and show the limits of the method at the same time.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Erdős-Pyber theorem for hypergraphs and secret sharing

A new, constructive proof with a small explicit constant is given to the Erdős-Pyber theorem which says that the edges of a graph on n vertices can be partitioned into complete bipartite subgraphs so that every vertex is covered at most O(n/ log n) times. The theorem is generalized to uniform hypergraphs. Similar bounds with smaller constant value is provided for fractional partitioning both fo...

متن کامل

Directed domination in oriented hypergraphs

ErdH{o}s [On Sch"utte problem, Math. Gaz. 47 (1963)] proved that every tournament on $n$ vertices has a directed dominating set of at most $log (n+1)$ vertices, where $log$ is the logarithm to base $2$. He also showed that there is a tournament on $n$ vertices with no directed domination set of cardinality less than $log n - 2 log log n + 1$. This notion of directed domination number has been g...

متن کامل

Computationally secure multiple secret sharing: models, schemes, and formal security analysis

A multi-secret sharing scheme (MSS) allows a dealer to share multiple secrets among a set of participants. in such a way a multi-secret sharing scheme (MSS) allows a dealer to share multiple secrets among a set of participants, such that any authorized subset of participants can reconstruct the secrets. Up to now, existing MSSs either require too long shares for participants to be perfect secur...

متن کامل

Sharing several secrets based on Lagrange's interpolation formula and Cipher feedback mode

In a multi-secret sharing scheme, several secret values are distributed among a set of n participants.In 2000 Chien et al.'s proposed a (t; n) multi-secret sharing scheme. Many storages and publicvalues required in Chien's scheme. Motivated by these concerns, some new (t; n) multi-secret sharingschemes are proposed in this paper based on the Lagrange interpolation formula for polynomials andcip...

متن کامل

An Efficient Secret Sharing-based Storage System for Cloud-based Internet of Things

Internet of things (IoTs) is the newfound information architecture based on the internet that develops interactions between objects and services in a secure and reliable environment. As the availability of many smart devices rises, secure and scalable mass storage systems for aggregate data is required in IoTs applications. In this paper, we propose a new method for storing aggregate data in Io...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013